十三五农业面源国家重点研发计划标志性成果综述

徐长春、熊伟

(农业农村部科技发展中心 北京 100176)

推动农业绿色发展是党中央、国务院的重大部署。 这是保障国家粮食安全、资源安全、生态安全,实现经济社会可持续发展的现实需要[1]。 随着农业投入品的过度使用、规模化畜禽养殖的排放,镉、汞、砷等重金属不断渗透到农产品产区环境中,内外污染因素叠加。 农业面源污染和农田重金属污染形势日益严峻。 国内外农业环境科学领域的研究热点和难点[2-3]。 在“863计划”、“973计划”、“国家科技支撑计划”、“公益性行业科研项目”等科技计划资助下,“十一五”期间和“十二五”,我国农业面源和重金属污染治理取得长足进步。 技术取得积极进展,农业面源污染防治和重金属污染土壤修复技术体系初步建立。 但仍存在系统基础研究有待深入、规模化、产业化应用的技术、产品和设备不足、易于推广、缺乏可复制的治理模式等问题。

“十三五”期间,国家重点研发计划启动了“农业面源及重金属污染农田综合防治与修复技术研发”重点项目(以下简称“农业面源及重金属污染农田综合防治修复技术研发”)特别项目”)。 项目围绕污染综合防治和整治重大战略需求,汇聚了国内相关领域的优势科研单位、企业和推广机构,组建了国家级协同研究团队和科研平台。 在全链条设计、集成实施的组织管理模式下,各项目承担单位在理论机理研究突破的基础上,开发了一批标准化、产业化的关键技术产品,并在典型领域开展集成示范应用,有效提升了我国农业面源和重金属污染防治与修复科技支撑能力和产业化水平。 本文结合专项组织管理工作,从基础研究、关键技术研发、综合示范应用三个方面,总结凝结了专项所取得的标志性成果,形成20项标志性成果,供科研人员和管理人员参考相关领域的部门。

在基础研究方面,该专项在农田面源污染物和重金属溯源、迁移转化机制、污染负荷及其与区域环境质量和农产品质量关系等重要理论方面取得了突破,形成了一批具有指导意义的新理论、新理论。 该方法为技术研发和示范应用提供了理论支撑,为下一步的研究工作奠定了良好的基础。

1.1 农田土壤氮、磷垂直淋溶、径流损失及迁移转化机制

该专项系统揭示了我国农田氮磷流失强度的空间格局和时间特征,识别了我国农田氮磷淋失和径流流失的关键区域、关键时段和关键路径。 初步圈定我国农田氮磷淋溶和径流损失易发区域。 有人指出,我国北方农田氮素主要通过淋溶流失,南方则以径流流失。 磷主要通过径流流失。 菜田单位面积氮磷流失强度最高,水肥耦合期是氮磷流失及防治的关键时期。 揭示了不同类型农田氮磷转化影响土壤氮磷垂直淋溶、挥发和侧向径流流失的机理及主控因素,明确了农田氮磷流失负荷与区域环境质量的关系,提出了农田氮磷以及磷源和汇。 功能转换理论及从源到汇转移的实现路径。 划定我国农业源氮磷生态脆弱区及监测评价体系,提出区域氮磷淋溶削减战略和削减草案。 研究结果为推动化肥减量、替代有机肥、畜禽粪便资源化利用、面源污染防治提供重要科学依据。

1.2 农田典型重金属来源、迁移转化规律及安全生产阈值分析

专项针对农田土壤和农产品重金属污染全过程,系统开展了典型农田土壤固溶-生物-评价终点(农产品)全过程重金属迁移转化。基于农产品安全和生态安全的土壤重金属安全阈值定量模型、评价方法和生态安全研究。 探究水稻、小麦、蔬菜等重金属吸收积累的关键因素,建立31个重金属有效性/毒性定量预测模型;

建立了基于浓度、形态和影响因素的通用生物累积性和毒性表征指标和方法,以及物种敏感性分布系列;

构建了基于土地类型、土壤性质、生物有效性/毒性和物种敏感性分布的土壤重金属农产品安全和生态安全阈值及计算模型。 该成果解决了农田系统重金属生物有效性定量表征和污染风险精准诊断的难题,为我国农田重金属污染风险精准诊断和安全生产提供了技术支撑,为农田系统污染风险的制定提供了理论依据。的相关标准和规范。 。

1.3 农田典型有毒有害生化污染物的污染机理及应用

针对农药、抗生素、邻苯二甲酸酯等新型土壤有机污染物,构建污染“检测方法-过程-机理-效果-调控”衔接的专项研究,指导加强区域农田有机污染减排和生物污染在不同的农业种植系统中。 风险防控的理论、方法和指标体系。 建立了抗性基因高通量同步检测和粪便污染溯源方法,制定了土壤中邻苯二甲酸酯残留、化肥中抗生素残留检测国家标准方法,构建了土壤化学/生物污染因子监测评价指标。典型的种植农田系统;

开发7种典型农药/抗生素污染菌剂产品及相关修复技术、4种产毒病原菌拮抗抗菌产品及相关修复技术,开发1种碳基复合微生物肥料产品,建成1条碳基复合微生物肥料生产线。 这一成果有力提升了我国农田有机/生物污染防治研究的国际竞争力,特别是化学农药污染防治领域由“跟随”变为“并跑”,为农田有机/生物污染防治研究的国际竞争力提供了科学依据和支撑。新型农田污染物防治。 理论基础。

该专项进一步强化关键共性技术和产品研发的系统性和实用性,形成从技术到产品(材料、设备)的创新链和产业链,有效提升农田防治修复技术装备水平我国面源与重金属污染。 和工业化水平。

2.1 稻田氮磷源库转换及田间沟塘综合防治技术体系

利用稻田和天然池塘的排灌系统,通过精准控制,实现“田-沟-塘”系统中稻田排水的循环利用,从而减少稻田氮、磷的流失,形成综合治理。我国不同水稻主产区的防控体系。 技术系统。 首次揭示我国水稻主产区氮磷流失空间格局,创建稻田氮磷流失创新模型,提出“源库函数”理论构建了稻田氮磷监测体系。 突破了控制稻田氮磷流失的关键技术和产品装备,提出了我国水稻基于稳产和水环境保护的最佳施氮量,打造了控源增汇体系控水扩容,实现稻田田间、沟渠、池塘间水量、水质的协同。 调节、回收等五项关键技术已形成七件产品装备,使稻田排水达到地表水Ⅲ类标准。 该项目专门集成了东北单季稻区、长江流域水旱轮作稻区、东南沿海双季稻区三大稻田的稻田氮磷流失综合防治技术模型。水稻种植面积,开发建设“稻田氮磷流失智能控制”平台;

建成核心示范区66.7 hm2。 该地区已基本实现稻田排灌智能控制,稻田氮磷流失负荷降低30%以上。

2.2 设施农业面源氮磷综合治理技术与产品

针对我国设施农业氮磷负荷大、土壤氮磷累积量高的现状,该项目建立了物理屏障、化学调控、生物调控、生物调控相结合的氮磷污染减排重点体系。生态优化。 以2项共性技术为基础,调整典型区域“2+X”氮磷减排模式。 复合氨基酸等高碳有机肥、秸秆季铵化水凝胶阻隔材料、氮磷活性调节微生物菌剂等系列产品已开发并产业化。 在黄淮海/环渤海、长江流域、黄土高原三个典型区域开展“2+X”氮磷污染负荷削减技术模式应用,实现氮素排放削减23.8% 39.9%,磷排放量减少21.6%至42.0%。 该成果有效减少了设施农业生产对环境的氮磷排放,科学解决了设施蔬菜优质高产与氮磷污染最小负荷之间的矛盾,为设施蔬菜的环境安全提供了技术支撑。我国设施农业产区和农产品质量安全。

2.3“深施秸秆肥增碳固氮”农田氮磷面源污染防治技术及产品

在揭示玉米秸秆深度还田条件下土壤养分活化特征、明确秸秆剖面降解规律的基础上,专门将“旋施”和“两免一深”技术装备与新型有机结合肥料的结构进行了创新。 固碳固氮技术模式解决了我国北方地区玉米秸秆表层堆积、耕层浅、秧苗弱、水肥利用率低等历史难题;

耕层储存扩容,提高水肥利用效率,次耕层增碳固氮、活性磷,有效控制氮磷流失。 相关技术装备及增碳固氮技术模型已在黄淮海地区、东北地区开展技术集成示范应用,面积达3 300 hm2以上,取得了良好效果;

与传统耕作方式相比,新技术可增加土壤有机质5%~10%,节约成本增收1500元·hm-2以上,减少氮素淋失损失10%~20%,减少氨挥发50%以上。 经济效益和生态环境效益。

周小雨并不关心麻糬是否卖完。 换句话说,周小雨不在乎,也无所谓。 无论如何,他很高兴。 如果麻糬卖完了,那个叫麻糬的男人就会给周小雨一笔不小的钱,一元或者两元。 周小雨很高兴。 如果麻薯没有卖完的话,周小雨肯定能吃到男人带回来的麻薯。

2.4 中低污染农田镉、砷同步防治技术及产品

针对高富集植物、化学淋滤、物理修复等传统土壤重金属污染防治技术的局限性,提出了土壤中镉、砷的“三抗治理”技术体系新思路——专门构建了水稻系统(调节和控制土壤-水界面铁循环,降低重金属活性,根-土界面提高铁膜固定,减少根系吸收,根-粒阻止重金属向籽粒转移),配合“源头抗性控制”和磁力螯合吸附“同步去除”技术净化灌溉水,有效降低中低污染农田水稻镉、砷含量。 建立了碳铁耦合镉砷同步钝化、氮铁耦合铁膜固定化、硒硅耦合生理屏障等新技术,开发了磁螯合吸附间充质干细胞(MSC)产品及配套生产线,铁改性生物质碳、铁改性腐殖质、硒复合硅溶胶等同步抗镉、砷的新产品。 相关技术产品解决了镉、砷治理同步难的问题,已在珠三角、西南、中南、长三角等10多个重金属污染核心示范区推广应用,已推广百万亩次,污染农田镉达标率提高到91.4%,无机砷达标率提高到97.6%。

2.5 低积累、超积累品种筛选、评价及技术标准化

专门系统开展低积累品种筛选评价、超积累品种筛选评价、品种标准化研究。 建立了基于遗传效应和环境效应的重金属低积累作物品种筛选方法和技术体系,筛选出水稻、小麦、玉米低重金属积累候选品种75个,并在典型镉和镉中进行了验证。砷污染地区。 在轻度污染范围内,可食部分重金属含量符合国家标准。 基于生态适宜性和重金属风险降低率,建立了适合间作的超积累植物品种/生态型筛选评价方法体系,筛选出景天、蜈蚣草等8个超积累植物品种/生态型。 在中度至轻度污染范围内,间作作物重金属含量均达到国家标准。 建立了标准化种质资源苗圃和信息数据库,形成了水稻品种镉富集特性多点筛选试验技术规程、超积累植物品种选育、种植和应用技术指南等规范性文件。 该成果为典型镉、砷污染地区农田重金属污染治理以及低积累农作物品种选育、超高(高)富集植物种植等新产业发展提供技术支撑。

2.6 重金属污染农田分类安全利用技术与产品

针对高地质背景农田土壤重金属污染,专项系统揭示了污染形成机制,明确了斜坡堆积型、次生富集型、迁移积累型地质农田土壤重金属的活化机制。 探究耕地土壤镉含量与水稻镉含量相关性弱的主要原因,制定适合水稻和旱地作物安全生产的技术标准。 以水稻和茎基部镉含量为核心,结合土壤镉污染指标,划分早稻、晚稻适宜生产区和限制生产区,实现水稻合格率90%以上。 以土壤镉污染指数、pH值和有机质含量为核心,划分旱地作物适宜生产区和限制生产区,实现小麦、蔬菜等作物合格率90%以上。 专门开发了适应性广的“低积累品种+碱肥+叶面调理剂”模式(简称“VFR”模式),降低水稻、小麦镉含量50%~80%,使水稻、小麦和可食用的蔬菜。 部分零件镉含量下降50%~80%。 针对高地质背景农田土壤重金属污染治理,提出不同于国家标准的安全利用和风险管控阈值,可有效保障重金属污染地区农作物的安全生产。

2.7 农业废弃物好氧发酵关键技术及智能装备

针对国内好氧发酵普遍存在的时间长、臭味重、设备智能化程度低等问题,该项目率先建立了农业废弃物超高温好氧堆肥技术和新一代封闭式好氧堆肥技术。我国发酵技术体系,创新生物干燥+好氧发酵工艺并实现规模化应用。 我们研发了一体化筒仓堆肥反应器、滚筒反应器、槽式反应器等一系列自主核心设备,并打造了堆肥配方软件、“温-湿-氧”传感器和智能控制系统,显着提高了好氧发酵效果。 系统的系统性和智能化程度;

专门研发的重金属钝化剂、除臭菌等产品,解决有机肥产品异味、污染等潜在风险;

研发大型立式高效秸秆破碎机和成套除塑除杂生产线,首创蔬菜秸秆工厂化化肥处理回收模式和技术,实现秸秆利用率提高50%,秸秆利用率提高40%病虫害减少,化肥用量减少20%。 %。 相关技术装备应用于环太湖城乡有机废弃物处理利用产业化示范项目,推动建立全国首个年产5万吨以上蔬菜秸秆有机肥生产线示范基地,形成良好市场好处。

2.8农业废弃物多原料厌氧干发酵成套关键技术与装备

为解决厌氧干发酵工艺中中间产物抑制、传质传热效率低、国产核心设备缺乏等瓶颈问题,专门开发了耐酸产甲烷菌生物强化技术,提高了厌氧干发酵工艺的抗冲击能力。发酵系统并实现生物强化效果,在易酸化且不稳定的厌氧发酵系统中每天连续添加1%菌液,可使醋酸化系统的有机负荷增加2倍。 专门开发的序批干发酵分层接种技术,可使沼气菌在特定区域处于优势地位,加快启动速度;

连续干发酵技术和连续推流干厌氧发酵设备,保证水力停留期和运行平稳;

配备渗滤液储罐和自吸泵,通过逐层喷淋和层间渗滤,提高基材的传质效率;

一体化活塞进料和固液分离密封出料装置,实现高固料进料,发酵底物总固体浓度、有机负荷率、体积产气率、甲烷含量等指标显着提高,系统运行状态稳定;

“农业废弃物干式厌氧发酵工艺系统”软件配备农业废弃物厌氧特征数据库,提高了农业废弃物厌氧发酵设备的智能化水平。

2.9农田覆盖污染机械技术集成工程防治技术与装备

针对西北地区地膜回收率低、地膜残留污染严重的问题,对地膜特性、地膜回收等导致地膜残留的关键环节进行了专项技术改进和优化。 优化地膜加工技术,开发出生产、销售成本零增加、易回收、低残留、高强度、厚度不小于0.01毫米的棉花、玉米、马铃薯专用地膜。 其断裂伸长率高于国标薄膜3.8~。 5.6倍。 对残膜回收机的边膜装置、仿形装置、卷膜装置、卸膜装置等进行了改进,推出了棉秆还田和残膜回收联合作业机、滚筒式玉米田间残膜清扫机、滚筒式玉米田残膜清扫机已定型。 马铃薯收获残膜捡拾一体机,残膜回收率提高10%~50%。 残膜加工利用中残膜撕碎、上料、吸尘设备、清洗及物料提升设备的优化集成,形成了优质、中质、低质利用三种技术流程。 专门的地膜污染综合防治保障机制,建立了以机械与技术一体化为核心贯穿棉花、玉米、马铃薯生产全过程的地膜污染综合防治技术模式。 在新疆、内蒙古、甘肃等地建立了333 hm2的核心区。 不同种植模式下地膜回收率均得到显着提高。 示范区保产或增产2%~5%,节约成本,增收150~750元·hm-2。

2.10农田重金属及面源污染快速检测监测、监督决策系统

针对区域污染数据管理和风险监管决策服务能力的短板,专门建设了集数据管理、数据挖掘、污染防治决策支持于一体的农田污染大数据平台和监管决策服务系统。发达。 该专项重点发展区域农田污染大数据聚合与管理技术,创新集“样本数据选择-影响因素识别-多因素融合统计推断”于一体的土壤环境质量插值制图技术,提高数据管理效率和数据质量。 分析能力;

突破污染风险遥感识别和监测网布局优化技术,构建了“精准瞄准遥感潜在风险——优化监测点布局——快速监测”的天地网一体化农田污染动态监测技术模型。 “地表源及重金属污染筛查”,建立了面源污染对水质的损益评估模型和生态补偿标准博弈模型;

开发了区域农业面源及重金属污染管理与决策分析系统。 具有污染调查、管理、评估、补偿等业务功能,提高了决策准确性和风险管控服务效率。

2.11 基于环境保护的中小型养殖场布局方法和污染控制技术总体规划

项目集成了长江中下游平原、黄淮海平原、东北、西北5个农业主产区的多项农业面源和重金属污染防治综合技术模式、华南、西南地区以及城乡一体化地区,形成了一批生态效应和经济效益兼顾的恢复治理模式,有力促进了我国区域经济和生态环境的可持续发展。

3.1 城乡一体化集约农业区面源重金属综合防治模式

面向京津冀、珠三角、长三角三大城乡农业一体化区域,以农田氮磷镉砷污染防治和景观改善为核心,打造了“生产、恢复、管理并举”综合防治技术模式。 项目具体提出农田土壤氮磷控制阈值和镉砷安全阈值,融合源头控制、过程控制、终端修复等面源污染防治技术模式,以及“源头控制有机肥+作物空间配置技术+高氮高磷农田“土壤修复+重金属钝化”“面源+重金属”全流程协同防控模式,形成了基于土壤修复+重金属钝化的双向防控模式。养殖废弃物无害化回收利用,开发了畜禽粪便有害物质去除及高温酶解一体化分解生产技术、仓储式末端蔬菜智能静态好氧发酵加工系统等,建立了综合利用模式of “collection-transportation-storage-production-marketing” of agricultural waste. The demonstration area has achieved a 30% reduction in chemical fertilizers, a 30% removal rate of heavy metals such as cadmium and arsenic in soil, and a reduction of more than 60% in the effective state of cadmium, arsenic and other heavy metals, and has carried out technology radiation promotion of more than 1,700 hm2.

3.2 Priority prevention and control system for non-point source pollutants in Huanghuaihai intensive farming

In response to the current situation of high pollution risks from breeding in the Huang-Huai-Hai region, high pollution complexities, and lack of disposal priorities, the special project focuses on the pollutant loads in different breeding areas, the distribution characteristics and treatment processes of various types of nitrogen, phosphorus, heavy metals, and antibiotic pollutants under different breeding types. Were studied. The focus of prevention and control of breeding pollution in the region was clarified, and the priority control of pollutants under each breeding type and the priority control links of various pollutants (nitrogen and phosphorus focused on treatment and utilization, heavy metals on the feed end control, antibiotics focused on the treatment process), A technology system for priority control of various pollutants from feed to treatment process and farmland application has been constructed, and a prevention and control model of land absorption, recycling + land absorption, and standard discharge + land absorption has been formed. This achievement has been demonstrated and technically applied in more than 140 farms in various provinces and cities in Huanghuaihai, and achieved good results. In the core area of ​​technology demonstration, the waste recycling rate reaches 97.5%, nitrogen pollution is reduced by more than 86.4%, phosphorus pollution is reduced by more than 97.5%, heavy metal emissions are reduced by 97.5%, and antibiotics are degraded by more than 99%.

3.3 Comprehensive prevention and control model of heavy metal and non-point source pollution in the middle and lower reaches of the Yangtze River

In view of the new characteristics of agricultural non-point source and heavy metal combined pollution, a special project was built in the middle and lower reaches of the Yangtze River to build a comprehensive prevention and control technology centered on ecological planting, low-accumulation crops and the application of new passivators. Integrates individual technologies such as farmland nitrogen and phosphorus source reduction, nutrient cycling, ammonia volatilization control, ecological planting, microbial agents, key node control, and regional joint defense, forming an annual, full-process, and three-dimensional regional non-point source pollution prevention and control technology system . Optimizing and integrating single technologies such as low-accumulation crops, hyper-accumulation plants, heavy metal passivation, agronomic regulation, and microbial enhancement have realized the restoration and safe use of farmlands in alternating flood and drought environments, different types of heavy metals and pollution levels. These achievements were selected as the main technologies in the “Guidelines for the Safe Utilization and Treatment and Restoration of Contaminated Farmland in Jiangsu Province (Trial Implementation)”, and a regional heavy metal and non-point source comprehensive prevention and control model was formed. A total of 1 324 hm2 of core demonstration areas were established in Suzhou and other places, and joint promotion The area exceeds 6 700 hm2.

3.4 Targeted restoration model for farmland heavy metal pollution in the main grain production areas of Southwest, Central and South China

Based on the grading of the southwestern pollution zoning and the safe planting zoning, a targeted restoration technology model is specially proposed. To ensure the quality and safety of crops as the primary goal, combined with cost-benefit and technical operability analysis, optimize and integrate cadmium and arsenic simultaneous control, simultaneous removal, foliar barrier and low-accumulation variety screening technologies, respectively for cadmium, arsenic and mercury pollution in limestone areas , arsenic and cadmium pollution in the red soil area of ​​the plateau, and cadmium pollution in the hilly plains of Sichuan and Chongqing have established a targeted technical model for the safe utilization and restoration of polluted farmland that adapts to the complex habitat conditions and pollution characteristics of the main grain production areas in Southwest China. This model can achieve stable or increased production of main crops, reduce the content of cadmium, arsenic, and mercury in economic parts by 25% to 60%, and the product quality meets the requirements of national food safety standards. The cost of the technical model is between 1500 and 15000 yuan hm between. At the end of the “13th Five-Year Plan”, the model has established a core demonstration area of ​​24 hm2 in Southwest China. In the demonstration area, the heavy metal content in economic parts of major crops such as rice, corn, and wheat has reached the standard, and the output has achieved stable or increased production;

Radiation promotion 7 440 hm2, the safe utilization rate of farmland in the radiation area reached over 95%.

3.5 Source-sink collaborative prevention and control technology system for farmland heavy metal pollution in mining-intensive areas in South China

For farmlands with different levels of pollution, a special integration of plant stabilization (high pollution) – plant extraction (medium pollution) – plant barrier (low pollution) technology system can carry out safe production of agricultural products while repairing polluted farmland, realizing “remediation while production “. For different types of mining wastewater, deep purification and reuse of tailings pond wastewater (15 000 m3·d-1) has been achieved, and the wastewater reuse rate is higher than 90%;

The quality of recycled water has basically no effect on Pb2+ and Zn2+ beneficiation indicators, and can save 1.45 million t·a-1 of fresh water resources. For the polluted farmland at the end, a cash crop-in-situ stable joint restoration technology suitable for heavily polluted soils, a super-accumulative plant-economic crop inter/rotation technology suitable for lightly polluted soils, and a safe utilization of light and slight soils have been formed. Technology, the cost of technical model is 15,000 to 75,000 yuan·hm-2. By selecting high-value cash crops such as passion fruit with South China characteristics in the technical model, a maximum income of 225,000 to 300,000 yuan·hm-2 can be obtained. The promotion and application of new technology products has great potential for marginal economic benefits in many aspects, and investment in mining wasteland and farmland infrastructure can generate certain indirect economic benefits for the local area. This integrated technology model has established core demonstration areas of 43 hm2 in Guangdong and Guangxi, and radiated and promoted 740 hm2.

3.6 Comprehensive prevention and control model of non-point source pollution in Northeast China

Combined with the actual situation of comprehensive prevention and control of agricultural non-point source pollution in Northeast China, the special project has formed a whole-process prevention and control model covering dry fields-paddy fields-ditches-wetlands from the spatial perspective, established a technical system for reducing nitrogen and phosphorus loads in the whole process of paddy fields, farmland drainage pollution reduction and Recycling technology system, etc. In terms of time, an annual prevention and control model is formed from the spring freeze-thaw period to the entire crop growth period, and a freeze-thaw upland nitrogen and phosphorus pollution interception technology system is integrated. Integrating the “key technology + mechanical supporting + product supporting” comprehensive utilization mode of straw and livestock and poultry manure, a comprehensive utilization technology system of straw and livestock and poultry manure in the main grain production area of ​​Northeast China has been established. For the first time, the contribution rate of freeze-thaw effect of nitrogen and phosphorus loss in dry fields in the cold region of Northeast China was analyzed, and a technical model for collaborative prevention and control of nitrogen and phosphorus loss pollution in dry fields with freeze-thaw slopes and plains was constructed. Innovate and form a technical model of “two exemptions and one tillage” to return all straw to the fields. In the demonstration area, the pollution load of nitrogen, phosphorus and pesticides has been reduced by more than 20%, the residual amount of toxic and harmful pollutants in farmland has been reduced by more than 20%, and the harmless consumption and utilization rate of agricultural organic waste has increased to 95%.

Through the organization and implementation of the “Thirteenth Five-Year Plan” agricultural non-point source special project, it has effectively promoted the expansion of my country’s agricultural non-point source pollution monitoring and control from point to area, and realized the improvement of means from traditional to modern, and the evolution of objects from single to comprehensive. The 14th Five-Year Plan has laid a solid foundation for research and control of agricultural non-point source and heavy metal pollution. During the “14th Five-Year Plan” and a longer period after that, it is necessary to continue to condense the achievements and experience, optimize the task layout, deepen the key areas, organize and implement the key points of the “14th Five-Year Plan” “agricultural non-point source, heavy metal pollution prevention and control, and green input research and development” Special projects, strive to make new breakthroughs in the applicability and intelligence of pollution control and restoration technologies, and the synergistic linkage of technology, market, and policy elements, and accelerate the formation of “source of input-application process- A comprehensive technical solution for the prevention and control of agricultural non-point source pollution that is closely connected with “end treatment-integrated demonstration”.

Acknowledgments: Thanks to the “13th Five-Year Plan” “Agricultural Non-point Source and Heavy Metal Polluted Farmland Comprehensive Prevention and Restoration Technology Research and Development” project undertaking units and experts for their strong support and help in summarizing the special landmark achievements.